Halogenation using Quaternary Ammonium Polyhalides. Part 22.1 Selective Bromination of Aromatic Ethers with Benzyltrimethylammonium Tribromide

Shoji Kajigaeshi,* Masayuki Moriwaki, Toshio Tanaka, and Shizuo Fujisaki
Department of Industrial Chemistry, Faculty of Engineering, Yamaguchi University, Tokiwadai, Ube, Japan 755
Takaaki Kakinami and Tsuyoshi Okamoto
Department of Industrial Chemistry, Ube Technical College, Tokiwadai, Ube, Japan 755

The reaction of aromatic ethers with a stoicheiometric amount of benzyltrimethylammonium tribromide in dichloromethane-methanol or acetic acid- ZnCl_{2} under mild conditions gave, selectively, mono-, di-, or tri-bromo-substituted aromatic ethers in quantitative yields.

Bromo-substituted aromatic ethers have occasionally been prepared by the direct electrophilic aromatic substitution of aromatic ethers with molecular bromine in an appropriate solvent such as acetic acid ${ }^{2}$ or carbon tetrachloride. ${ }^{3}$ O-Alkylation of bromophenols has been used for the preparation of bromoaromatic ethers. ${ }^{4}$ The Sandmeyer method for alkoxy-substituted aromatic amines has also been used to obtain pure bromo-aromatic ethers. ${ }^{5} \quad N$-Bromosuccinimide (NBS) has also been employed occasionally. ${ }^{6}$

We have shown that benzyltrimethylammonium tribromide (BTMA- Br_{3}) is a useful stable reagent for brominating aromatic compounds such as phenols, ${ }^{7}$ aromatic amines, ${ }^{8}$ and acetanilides. 9 Our preliminary work demonstrated that BTMA $\cdot \mathrm{Br}_{3}$ in dichloromethane-methanol acts as an effective brominating agent for several aromatic ethers. ${ }^{10}$ We now report the selective bromination of a wide range of aromatic ethers by use of BTMA- Br_{3} in dichloromethane-methanol or in acetic acid in the presence of ZnCl_{2}.

Results and Discussion

The reaction of aromatic ethers with a stoicheiometric amount of BTMA- Br_{3} in dichloromethane-methanol or in acetic acidZnCl_{2} gave, selectively, the desired mono-, di-, or tri-bromosubstituted aromatic ethers in quantitative yields. For example, the reaction of 1 -methoxy-3,5-dimethylbenzene with 1.0 equiv. of BTMA- Br_{3} in dichloromethane-methanol at room temperature gave 4-bromo-1-methoxy-3,5-dimethylbenzene, and that with 2.0 equiv. of BTMA• Br_{3} and ZnCl_{2} in acetic acid at room temperature gave 2,4-dibromo-1-methoxy-3,5-dimethylbenzene; further, the reaction with 3.0 equiv. of $B T M A \cdot \mathrm{Br}_{3}$ and ZnCl_{2} in acetic acid at $70^{\circ} \mathrm{C}$ gave 2,4,6-tribromo-1-methoxy-3,5-dimethylbenzene, in good yields. The results are summarized in the Table.

We have already reported that the presence of methanol markedly facilitates the electrophilic bromination of aromatic compounds with BTMA• Br_{3} in dichloromethane, and suggested the formation of methyl hypobromite as the active species. ${ }^{36}$ BTMA- Br_{3} is only slightly soluble in acetic acid at room temperature, but the addition of ZnCl_{2} increases its solubility, allowing the bromination of aromatic ethers to proceed smoothly under mild conditions. An equimolar amount of ZnCl_{2} with respect to BTMA $\cdot \mathrm{Br}_{3}$ is required. We proposed the existence of the $\left[\mathrm{PhCH}_{2} \mathrm{NMe}_{3}\right]^{+}\left[\mathrm{ZnCl}_{2} \mathrm{Br}_{2}\right]^{2-} \mathrm{Br}^{+}$complex as the active species, formed from $\mathrm{BTMA} \cdot \mathrm{Br}_{3}$ and an equimolar amount of ZnCl_{2}. ${ }^{37}$

As shown in the Table, monobromo-substituted aromatic ethers can usually be obtained from aromatic ethers using

Reagents: $\boldsymbol{n} \mathrm{PhCH}_{\mathbf{2}}{ }^{+} \mathrm{Me}_{3} \mathrm{Br}^{-}$in $\mathrm{CH}_{\mathbf{2}} \mathrm{Cl}_{\mathbf{2}}-\mathbf{M e O H}$ or $\mathrm{AcOH}-\mathrm{ZnCl}_{\mathbf{2}}$.
an equimolar amount of BTMA- Br_{3} in dichloromethanemethanol, and di- or tri-bromo-substituted products may be prepared by use of 2 or 3 equiv., respectively, of $\mathrm{BTMA} \cdot \mathrm{Br}_{3}$ and $\mathrm{ZnCl}_{\mathbf{2}}$ in acetic acid. In fact, the reaction of aromatic ethers (except active compounds such as 1,3-dimethoxybenzene, 1,3diethoxybenzene, and 1,3,5-trimethoxybenzene) with BTMA• Br_{3} in dichloromethane-methanol gave only mono-bromo-substituted derivatives regardless of the presence of even a large excess of the reagent. In contrast, BTMA• Br_{3} in acetic acid- ZnCl_{2} was so effective that this system could not be used to obtain monobromo-derivatives. Less reactive aromatic ethers such as 1-methoxy-2-nitro- and 1-methoxy-4-nitro-benzene were not brominated in dichloromethane-methanol, but their monobromo-derivatives could be obtained by using BTMA• Br_{3} in acetic acid- ZnCl_{2} in quantative yields (see Table).

We believe that this procedure for the selective bromination of aromatic ethers should prove to be useful owing to its ease, mildness of conditions, and good yields.

Experimental

${ }^{1} \mathrm{H}$ NMR spectra were recorded on a JMN-MH-100 spectrometer with tetramethylsilane as internal standard. All m.p.s and b.p.s are uncorrected.

4-Bromo-1-methoxybenzene; Typical Procedure using BTMA- Br_{3} and methanol (Table, entry 1).-To a solution of methoxybenzene ($0.50 \mathrm{~g}, 4.62 \mathrm{mmol}$) in dichloromethane (50 ml)-methanol (20 ml) was added BTMA• $\mathrm{Br}_{3}{ }^{37}(1.98 \mathrm{~g}, 5.08$ mmol). The mixture was stirred at room temperature for 2 h until the initial orange colour faded. The solvent was distilled off and water (20 ml) added to the residue. The mixture was extracted with ether ($4 \times 40 \mathrm{ml}$). The ethereal layer was dried

Table. Selective bromination of aromatic ethers with $\mathrm{BTMA} \cdot \mathrm{Br}_{3}$.

Entry	Substrate	Molar ratio ${ }^{\circ}$	Reaction conditions		Solvent (additive)	Product ${ }^{\text {b }}$ (yield, ${ }^{\text {\% }}$)
			Temp. $/{ }^{\circ} \mathrm{C}$	Time		
1	PhOMe	1.1	rt, ${ }^{\text {d }}$	2 h	$\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{MeOH})$	$4-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{OMe}^{2}$ (98)
2	PhOMe	2.1	70	2 h	$\mathrm{AcOH}\left(\mathrm{ZnCl}_{2}\right)$	2,4- $\mathrm{Br}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{OMe}^{2}$ (97)
3	PhOEt	1.1	rt	1 h	$\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{MeOH})$	$4-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{OEt}^{6}(98)$
4	PhOEt	2.1	70	2 h	$\mathrm{AcOH}\left(\mathrm{ZnCl}_{2}\right)$	2,4- $\mathrm{Br}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{OEt}^{11}$ (98)
5	PhOBu	1.1	rt	1 h	$\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{MeOH})$	$4-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{OBu}^{12}$ (98)
6	PhOBu	2.1	70	2 h	$\mathrm{AcOH}\left(\mathrm{ZnCl}_{2}\right)$	2,4- $\mathrm{Br}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{OBu}$ (98)
7	2-MeC6 $\mathrm{H}_{4} \mathrm{OMe}$	1.1	rt	30 min	$\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{MeOH})$	$4-\mathrm{Br}-2-\mathrm{MeC}_{6} \mathrm{H}_{3} \mathrm{OMe}^{13}$ (98)
8	2-MeC ${ }_{6} \mathrm{H}_{4} \mathrm{OMM}$	2.1	rt	8 h .	$\mathrm{AcOH}\left(\mathrm{ZnCl}_{2}\right)$	2,4- $\mathrm{Br}_{2}-6-\mathrm{MeC}_{6} \mathrm{H}_{2} \mathrm{OMe}^{14}$ (94)
9	$3-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMM}$	1.1	rt	3 min	$\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{MeOH})$	$4-\mathrm{Br}-3-\mathrm{MeC}_{6} \mathrm{H}_{3} \mathrm{OMe}^{5}$ (98)
10	$3-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}$	3.1	70	9 h	$\mathrm{AcOH}\left(\mathrm{ZnCl}_{2}\right)$	2,4,6- $\mathrm{Br}_{3}-3-\mathrm{MeC}_{6} \mathrm{HOMMe}^{15}$ (98)
11	$4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}$	1.0	rt	10 min	$\mathrm{AcOH}\left(\mathrm{ZnCl}_{2}\right)$	2 2-Br-4-MeC ${ }_{6} \mathrm{H}_{3} \mathrm{OMe}^{4}{ }^{(93)}$
12	2,3-Me ${ }_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{OMe}$	1.1	rt	1 min	$\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{MeOH})$	$4-\mathrm{Br}-2,3-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{OMMe}^{16}$ (98)
13	2,3-Me2 ${ }_{2}{ }_{6} \mathrm{H}_{3} \mathrm{OMe}$	2.1	rt	2 h .	$\mathrm{AcOH}\left(\mathrm{ZnCl}_{2}\right)$	$4,6-\mathrm{Br}_{2}-2,3-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{HOMe}$ (98)
14	$2,4-\mathrm{Me} 2_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{OMe}$	1.1	rt	20 min	$\mathrm{AcOH}\left(\mathrm{ZnCl}_{2}\right)$	2-Br-4,6-Me ${ }_{2} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{OMMe}^{17}$ (93)
15	2,5-Me2 ${ }_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{OMe}$	1.1	rt	1 min	$\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{MeOH})$	$4-\mathrm{Br}-2,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{OMMe}$ (98)
16	2,5-Me2 ${ }_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{OMe}$	2.1	rt	2 h .	$\mathrm{AcOH}\left(\mathrm{ZnCl}_{2}\right)$	2,4-Br ${ }_{2}-3,6-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{HOMe}^{18}{ }^{18}$ (97)
17	2,6-Me2 ${ }_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{OMe}$	1.1	rt	20 min	$\mathrm{AcOH}\left(\mathrm{ZnCl}_{2}\right)$	$4-\mathrm{Br}-2,6-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{OMe}^{19}$ (98)
18	$3,4-\mathrm{Me} 2_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{OMe}$	1.1	rt	5 min	$\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{MeOH})$	2 2-Br-4,5-Me ${ }_{2} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{OMe}^{20}$ (97)
19	$3,4-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{OMe}$	2.1	rt	1 h .	$\mathrm{AcOH}\left(\mathrm{ZnCl}_{2}\right)$	2,6- $\mathrm{Br}_{2}-3,4-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{HOMe}$ (95)
20	$3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{OMe}$	1.0	rt	1 min	$\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{MeOH})$	$4-\mathrm{Br}-3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{OMe}^{3}$ (98)
21	$3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{OMe}$	2.0	rt	30 min	$\mathrm{AcOH}\left(\mathrm{ZnCl}_{2}\right)$	2,4- $\mathrm{Br}_{2}-3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{HOMe}^{21}$ (92)
22	$3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{OMe}$	3.0	70	2 h	$\mathrm{AcOH}\left(\mathrm{ZnCl}_{2}\right)$	2,4,6- $\mathrm{Br}_{3}-3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{OMe}^{22}$ (93)
23	$1,2-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	1.1	rt	1 h	$\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{MeOH})$	$4-\mathrm{BrC}_{6} \mathrm{H}_{3}(\mathrm{OMe})_{2}-1,2^{23}{ }^{\text {(98) }}$
24	$1,2-\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	2.1	rt	1 h	$\mathrm{AcOH}\left(\mathrm{ZnCl}_{2}\right)$	$4,5-\mathrm{Br}_{2} \mathrm{C}_{6} \mathrm{H}_{2}(\mathrm{OMe})_{2}{ }^{-1,2^{24}}$ (97)
25	$1,2-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	4.1	70	24 h	$\mathrm{AcOH}\left(\mathrm{ZnCl}_{2}\right)$	3,4,5,6- $\mathrm{Br}_{4} \mathrm{C}_{6}(\mathrm{OMe})_{2}-1,2$ (89)
26	$1,3-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	2.1	rt	1 min	$\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{MeOH})$	2,4- $\mathrm{Br}_{2} \mathrm{C}_{6} \mathrm{H}_{2}(\mathrm{OMe})_{2}-1,5{ }^{25}(98)$
27	$1,3-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	3.1	70	15 h	$\mathrm{AcOH}\left(\mathrm{ZnCl}_{2}\right)$	$2,4,6-\mathrm{Br}_{3} \mathrm{C}_{6} \mathrm{H}\left(\mathrm{OMe}_{2}\right)-1,3{ }^{26}(83)$
28	2,4- $\mathrm{Br}_{2} \mathrm{C}_{6} \mathrm{H}_{2}-1,5-(\mathrm{MeO})_{2}$	1.1	70	17 h	$\mathrm{AcOH}\left(\mathrm{ZnCl}_{2}\right)$	2,4,6- $\mathrm{Br}_{3} \mathrm{C}_{6} \mathrm{H}\left(\mathrm{OMe}_{2}\right)-1,3{ }^{26}$ (89)
29	1,3 -(EtO) $2_{6} \mathrm{C}_{6} \mathrm{H}_{4}$	2.1	rt	1 min	$\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{MeOH})$	2,4- $\mathrm{Br}_{2} \mathrm{C}_{6} \mathrm{H}_{2}(\mathrm{OEt})_{2}-1,5{ }^{27}$ (98)
30	$1,3-(\mathrm{EtO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	3.1	70	17 h	$\mathrm{AcOH}\left(\mathrm{ZnCl}_{2}\right)$	2,4,6- $\mathrm{Br}_{3} \mathrm{C}_{6} \mathrm{H}(\mathrm{OEt})_{2}-1,3{ }^{27}$ (85)
31	$1,4-\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	2.1	rt	3 h	$\mathrm{AcOH}\left(\mathrm{ZnCl}_{2}\right)$	2,5- $\mathrm{Br}_{2} \mathrm{C}_{6} \mathrm{H}_{2}(\mathrm{OMe})_{2}-1,4{ }^{28}$ (98)
32	1,4-(MeO) ${ }_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	4.1	70	24 h	$\mathrm{AcOH}\left(\mathrm{ZnCl}_{2}\right)$	2,3,5,6- $\mathrm{Br}_{4} \mathrm{C}_{6}(\mathrm{OMe})_{2}-1,4{ }^{29}(86)$
33	$1,3,5-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}_{3}$	2.1	rt	1 min	$\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{MeOH})$	2,4- $\mathrm{Br}_{2} \mathrm{C}_{6} \mathrm{H}(\mathrm{OMe})_{3}-1,3,5{ }^{30}$ (98)
34	$1,3,5-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}_{3}$	3.1	rt	2 h	$\mathrm{AcOH}\left(\mathrm{ZnCl}_{2}\right)$	2,4,6- $\mathrm{Br}_{2} \mathrm{C}_{6}(\mathrm{OMe})_{3}-1,3,5^{31}$ (96)
35	$2-\mathrm{BrC} \mathrm{C}_{6} \mathrm{H}_{2}-1,3,5-(\mathrm{MeO})_{3}$	2.1	rt	2 h	$\mathrm{AcOH}\left(\mathrm{ZnCl}_{2}\right)$	2,4,6- $\mathrm{Br}_{3} \mathrm{C}_{6}(\mathrm{OMe})_{3}-1,3,5^{31}$ (95)
36	2,4- $\mathrm{Br}_{2} \mathrm{C}_{6} \mathrm{H}-1,3,5-(\mathrm{MeO})_{3}$	1.1	rt	2 h	$\mathrm{AcOH}\left(\mathrm{ZnCl}_{2}\right)$	2,4,6- $\mathrm{Br}_{3} \mathrm{C}_{6}(\mathrm{OMe})_{3}-1,3,5^{31}$ (95)
37	$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{O}$	2.1	rt	20 min	$\mathrm{AcOH}\left(\mathrm{ZnCl}_{2}\right)$	$\left(4-\mathrm{BrC}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{O}^{32}$ (98)
38	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OC}_{6} \mathrm{H}_{5}$	1.1	rt	25 min	$\mathrm{AcOH}\left(\mathrm{ZnCl}_{2}\right)$	$\mathrm{PhCH}_{2} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{Br}-4{ }^{33}(98)$
39	$\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCH}_{2}\right)_{2}$	2.1	rt	2 h	$\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{MeOH})$	$\left(4-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{OCH}_{2}\right)_{2}{ }^{34}(98)$
40	$\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCH}_{2}\right)_{2}$	4.1	70	2 h	$\mathrm{AcOH}\left(\mathrm{ZnCl}_{2}\right)$	$\left(2,4-\mathrm{Br}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{OCH}_{2}\right)_{2}(98)$
41	$2-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}$	1.1	70	17 h	$\mathrm{AcOH}\left(\mathrm{ZnCl}_{2}\right)$	$4-\mathrm{Br}-2-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{OMe}^{35}$ (98)
42	$4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}$	1.1	70	17 h	$\mathrm{AcOH}\left(\mathrm{ZnCl}_{2}\right)$	$2-\mathrm{Br}-4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{OMe}^{35}$ (97)

${ }^{a}$ BTMA $\cdot \mathrm{Br}_{3} /$ substrate. ${ }^{b}$ Known products were characterized by comparison with authentic material (${ }^{1} \mathrm{H}$ NMR and IR spectra, and b.p. or m.p.).
${ }^{\text {c }}$ Yield of isolated product. ${ }^{\mathbf{d}} \mathrm{rt}=$ room temperature.
over MgSO_{4} and evaporated under reduced pressure to give 4-bromo-1-methoxybenzene as colourless oil; yield $0.84 \mathrm{~g}(98 \%)$; b.p. $213^{\circ} \mathrm{C}$ at 760 mmHg (lit., ${ }^{2}$ b.p. $124^{\circ} \mathrm{C}$ at 40 mmHg).

2,4-Dibromo-1-methoxybenzene; Typical Procedure using BTMA- Br_{3} with Zinc Chloride (Table, entry 2).-To a solution of methoxybenzene $(0.50 \mathrm{~g}, 4.62 \mathrm{mmol})$ in acetic acid $(20 \mathrm{ml})$ was added BTMA $\cdot \mathrm{Br}_{3}(3.79 \mathrm{~g}, 9.72 \mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(1.5 \mathrm{~g}, 11.0$ mmol). The mixture was stirred for 2 h at $70^{\circ} \mathrm{C}$ until the orange colour faded. To the mixture was added water (20 ml) and 5% aqueous $\mathrm{NaHSO}_{3}(10 \mathrm{ml})$. The mixture was extracted with hexane ($4 \times 40 \mathrm{ml}$). The organic layer was dried over MgSO_{4}, and passed through a short column of alumina. The eluate (hexane solution) was concentrated under reduced pressure to give 2,4-dibromo-1-methoxybenzene as colourless crystals; yield $1.19 \mathrm{~g}(97 \%)$; m.p. $60-61^{\circ} \mathrm{C}\left(\right.$ lit., 2 m.p. $\left.61-62^{\circ} \mathrm{C}\right)$.

Characterization of New Compounds.-2,4-Dibromo-1butoxybenzene (entry 6) was a colourless oil, b.p. $300-302{ }^{\circ} \mathrm{C}$ at 760 mmHg ; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 0.78-2.05(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Pr}), 3.85(\mathrm{t}$,
$J 6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), and 6.48-7.52 (m, $3 \mathrm{H}, \mathrm{ArH}$) (Found: C, $38.9 ; \mathrm{H}, 3.75 \%$. $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{O}$ requires $\mathrm{C}, 39.0 ; \mathrm{H}, 3.9 \%$).

4,6-Dibromo-1-methoxy-2,3-dimethylbenzene (entry 13) formed colourless crystals [from ethanol-water (1:3)], m.p. $21^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 2.27(\mathrm{~s}, 6 \mathrm{H}, 2$ - and 3-Me), $3.72(\mathrm{~s}, 3$ H, OMe), and 7.52 (s, $1 \mathrm{H}, 5-\mathrm{H}$) (Found: C, 36.3; H, 3.3. $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{O}$ requires $\mathrm{C}, 36.8 ; \mathrm{H}, 3.4 \%$).

4-Bromo-1-methoxy-2,5-dimethylbenzene (entry 15) formed colourless crystals [from ethanol-water (1:3)], m.p. $28-29^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}^{2} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 2.11$ (s, $3 \mathrm{H}, 2-\mathrm{Me}$), 2.27 (s, $3 \mathrm{H}, 5-\mathrm{Me}$), $3.65(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 6.51(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H})$, and $7.10(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H})$ (Found: $\mathrm{C}, 50.0 ; \mathrm{H}, 5.2 . \mathrm{C}_{9} \mathrm{H}_{11} \mathrm{BrO}$ requires $\mathrm{C}, 50.3 ; \mathrm{H}$, 5.2%).

2,6-Dibromo-1-methoxy-3,4-dimethylbenzene (entry 19) formed colourless crystals [from ethanol-water (1:3)], m.p. 55$56{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.18(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{Me}), 2.20(\mathrm{~s}, 3 \mathrm{H}$, 3-Me), 3.75 (s, $3 \mathrm{H}, \mathrm{OMe}$), and 7.07 (s, $1 \mathrm{H}, 5-\mathrm{H}$) (Found: C, 36.6; $\mathrm{H}, 3.4 . \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{O}$ requires $\mathrm{C}, 36.8 ; \mathrm{H}, 3.4 \%$).

3,4,5,6-Tetrabromo-1,2-dimethoxybenzene (entry 25) formed colourless crystals (from methanol), m.p. $127-127.5^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$

NMR (CDCl_{3}): $\delta 3.88$ (s, $6 \mathrm{H}, 2 \times \mathrm{OMe}$) (Found: C, 21.2; H , 1.3. $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Br}_{4} \mathrm{O}_{2}$ requires $\mathrm{C}, 21.2 ; \mathrm{H}, 1.3 \%$).

1,2-Bis(2,4-dibromophenoxy)ethane (entry 40) formed colourless crystals (from methanol), m.p. $179-180^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 4.39\left(\mathrm{~s}, 4 \mathrm{H}, 2 \times \mathrm{OCH}_{2}\right)$ and 6.7-7.7 (m, $\left.6 \mathrm{H}, \mathrm{ArH}\right)$ (Found: $\mathrm{C}, 31.8 ; \mathrm{H}, 1.9 . \mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Br}_{4} \mathrm{O}_{2}$ requires $\mathrm{C}, 31.7 ; \mathrm{H}, 1.9 \%$).

References

1 Part 21: S. Kajigaeshi, M. Shimizu, M. Moriwaki, S. Fujisaki, and T. Kakinami, Tech. Rept. Yamaguchi Univ., 1989, 4, 237.
2 A. S. Hussey and I. J. Wilk, J. Am. Chem. Soc., 1950, 72, 830.
3 J. D. Edwards, Jr., and J. L. Cashaw, J. Am. Chem. Soc., 1956, 78, 3821.
4 M. J. S. Dewar and N. A. Puttnam, J. Chem. Soc., 1959, 4086.
5 M. S. Carpenter, W. M. Easter, and T. F. Wood, J. Org. Chem., 1951, 16, 586.
6 N. P. Buu-Hoï, Justus Liebigs Ann. Chem., 1944, 556, 1.
7 S. Kajigaeshi, T. Kakinami, T. Okamoto, H. Nakamura, and M. Fujikawa, Bull. Chem. Soc. Jpn., 1987, 60, 4187.
8 S. Kajigaeshi, T. Kakinami, K. Inoue, M. Kondo, H. Nakamura, M. Fujikawa, and T. Okamoto, Bull. Chem. Soc. Jpn., 1988, 61, 597.
9 S. Kajigaeshi, T. Kakinami, H. Yamasaki, S. Fujisaki, and T. Okamoto, Bull. Chem. Soc. Jpn., 1988, 61, 2681.
10 S. Kajigaeshi, T. Kakinami, M. Moriwaki, T. Tanaka, S. Fujisaki, and T. Okamoto, Chem. Express, 1988, 3, 219.
11 D. M. Birosel, J. Am. Chem. Soc., 1931, 53, 1408.
12 G. S. Kolesnikov and G. M. Pogosyan, Izv. Akad. Nauk. Armyan, SSR. Ser. Khim. Nauk., 1957, 10, 131 (Chem. Abstr., 1958, 52, 4554).
13 H. E. Ungnade and L. Rubin, J. Org. Chem., 1951, 16, 1311.
14 E. Bures, Chem. Listy., 1927, 21, 221.
15 M. Kohn and A. Segel, Monatsch. Chem., 1926, 46, 661.
16 W. F. Short, H. Stromberg, and A. E. Willis, J. Chem. Soc., 1936, 319.

17 P. Cagniant and M. P. Cagniant, Bull. Soc. Chim. Fr., 1957, 827.
18 E. Bures and Fr. Meskan, Chem. Zentralbl., 1937, 11, 3747.
19 T. C. Bruice, N. Kharasch, and R. J. Winzler, J. Org. Chem., 1953, 18, 83.

20 M. Tomita, J. Pharm. Soc. Jpn., 1936, 56, 814 (Chem. Abstr., 1938, 32, 8426).

21 K. Auwers and H. Schütte, Justus Liebigs Ann. Chem., 1920, 421, 59.
22 M. Kohn and M. K. Feldmann, Monatsch. Chem., 1928, $49,169$.
23 J. M. Bruce, J. Chem. Soc., 1959, 2366.
24 H. W. Underwood, Jr., O. L. Baril, and G. C. Toone, J. Am. Chem. Soc., 1930, 52, 4087.
25 H. Davidge, A. G. Davies, J. Kenyon, and R. F. Mason, J. Chem. Soc., 1958, 4569.
26 M. Kohn and G. Löff, Monatsch. Chem., 1925, 45, 589.
27 C. L. Jackson and F. L. Dunlap, Am. Chem. J., 1896, 18, 117.
28 K. B. Everard and L. E. Sutton, J. Chem. Soc., 1951, 16.
29 M. Kohn and S. Grun, Monatsch. Chem., 1925, 45, 663.
30 H. Leuchs, Justus Liebigs Ann. Chem., 1928, 460, 1.
31 W. Will, Berichte, 1888, 21, 603.
32 S. M. Loh and E. E. Turner, J. Chem. Soc., 1955, 1274.
33 S. G. Powell and R. Adams, J. Am. Chem. Soc., 1920, $42,656$.
34 A. C. Cope, J. Am. Chem. Soc., 1935, 57, 572.
35 M. Kohn and H. Karlin, Monatsch. Chem., 1927, 48, 613.
36 S. Kajigaeshi, T. Kakinami, H. Tokiyama, T. Hirakwa, and T. Okamoto, Chem. Lett., 1987, 627.
37 S. Kajigaeshi, T. Kakinami, M. Moriwaki, T. Tanaka, S. Fujisaki, and T. Okamoto, Bull. Chem. Soc. Jpn., 1989, 62, 439.

Paper 9/03148K
Received 25th July 1989 Accepted 23rd September 1989

